Survival of newly postmitotic motoneurons is transiently independent of exogenous trophic support.

نویسندگان

  • C Mettling
  • A Gouin
  • M Robinson
  • H el M'Hamdi
  • W Camu
  • E Bloch-Gallego
  • B Buisson
  • H Tanaka
  • A M Davies
  • C E Henderson
چکیده

We compared the survival requirements of early- and late-born motoneurons from E5 chicken spinal cord. Density gradient centrifugation followed by immunopanning using SC1 antibody allowed us to purify two size classes of motoneuron. Large motoneurons retained by 6.8% metrizamide were shown by BrdU labeling in ovo to be born on average 1.5 d earlier than the small motoneurons recovered from the metrizamide pellet. Large motoneurons were both biochemically and functionally more mature: they expressed higher levels of choline acetyltransferase and low-affinity neurotrophin receptor, and had an acute requirement for trophic support from muscle-derived factors. After 24 hr in culture in basal medium, all early-born motoneurons died, whereas 60% of late-born motoneurons survived. Small motoneurons can develop into large motoneurons in ovo, suggesting that they represent a general transitional stage in motoneuron development. Our results suggest that a defined period elapses between birth of a motoneuron and its acquisition of trophic dependence, possibly corresponding to the time required for target innervation. This property may have important consequences for the timing and regulation of developmental motoneuron death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elucidating the molecular mechanisms that underlie the target control of motoneuron death.

Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have gi...

متن کامل

GFRa1 Is Required for Development of Distinct Subpopulations of Motoneuron

Glial cell-line derived neurotrophic factor (GDNF) and its relative neurturin (NTN) are potent trophic factors for motoneurons. They exert their biological effects by activating the RET tyrosine kinase in the presence of a glycosyl-phosphatidylinositol-linked co-receptor, either GFRa1 or GFRa2. By whole-mount in situ hybridization on embryonic mouse spinal cord, we demonstrate that whereas Ret ...

متن کامل

Extracellular heat shock protein 70: a critical component for motoneuron survival.

The dependence of developing spinal motoneuron survival on a soluble factor(s) from their target, muscle tissue is well established both in vivo and in vitro. Considering this apparent dependence, we examined whether a specific component of the stress response mediates motoneuron survival in trophic factor-deprived environments. We demonstrate that, although endogenous expression of heat shock ...

متن کامل

Hepatocyte growth factor (HGF/SF) is a muscle-derived survival factor for a subpopulation of embryonic motoneurons.

Muscle-derived factors are known to be important for the survival of developing spinal motoneurons, but the molecules involved have not been characterized. Hepatocyte growth factor/scatter factor (HGF/SF) plays an important role in muscle development and motoneuron axon outgrowth. We show that HGF/SF has potent neurotrophic activity (EC50=2 pM) for a subpopulation (40%) of purified embryonic ra...

متن کامل

Embryonic wing and leg motoneurons have intrinsically different survival properties.

Although spinal motoneurons in the chick embryo are born in a rostro-caudal gradient, the timing of their naturally occurring cell death varies in the opposite sense: brachial motoneurons (MNs) die later than lumbar MNs. We used in vitro methods to determine whether this difference results from factors intrinsic or extrinsic to the MNs. Embryonic MNs were purified from E5 lumbar and brachial sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 1995